Synchronized之轻量级锁与偏向锁
Synchronized之轻量级锁与偏向锁
引入
理解
monitor这种锁是由操作系统提供的,要使用它成本是很高的。如果每次进入synchronized的使用都要获取monitor锁的话,对程序运行的性能是有影响的。
从Java6开始,对synchronized获取锁的方式进行了一些改进,从直接使用monitor锁改成了还可以使用轻量级锁、偏向锁。
类比故事
故事角色:
- 老王 - JVM
- 小南 - 线程
- 小女 - 线程
- 房间 - 对象
- 房间门上 - 防盗锁 - Monitor
- 房间门上 - 小南书包 - 轻量级锁
- 房间门上 - 刻上小南大名 - 偏向锁
- 批量重刻名 - 一个类的偏向锁撤销到达 20 阈值
- 不能刻名字 - 批量撤销该类对象的偏向锁,设置该类不可偏向
小南要使用房间保证计算不被其它人干扰(原子性),最初,他用的是防盗锁,当上下文切换时,锁住门。这样即使他离开了别人也进不了门,他的工作就是安全的。
但是,很多情况下没人跟他来竞争房间的使用权。小女是要用房间,但使用的时间上是错开的,小南白天用,小女晚上用。每次上锁太麻烦了,有没有更简单的办法呢?
小南和小女商量了一下约定不锁门了,而是谁用房间谁把自己的书包挂在门口,但他们的书包样式都一样,因此每次进门前得翻翻书包看课本是谁的,如果是自己的那么就可以进门,这样省的上锁解锁了。万一书包不是自己的,那么就在门外等,并通知对方下次用锁门的方式。
后来,小女回老家了,很长一段时间都不会用这个房间。小南每次还是挂书包,翻书包,虽然比锁门省事了,但仍然觉得麻烦。于是,小南干脆在门上刻上了自己的名字:【小南专属房间,其它人勿用】,下次来用房间时,只要名字还在,那么说明没人打扰,还是可以安全地使用房间。如果这期间有其它人要用这个房间,那么由使用者将小南刻的名字擦掉,升级为挂书包的方式。
同学们都放假回老家了小南就膨胀了,在 20 个房间刻上了自己的名字,想进哪个进哪个。后来他自己放假回老家了,这时小女回来了(她也要用这些房间),结果就是得一个个地擦掉小南刻的名字,升级为挂书包的方式。老王觉得这成本有点高,提出了一种批量重刻名的方法,他让小女不用挂书包了,可以直接在门上刻上自己的名字
后来,刻名的现象越来越频繁,老王受不了了:算了,这些房间都不能刻名了,只能挂书包
原理之轻量级锁
原理
轻量级锁的使用场景:如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。
轻量级锁对使用者是透明的,即语法仍然是 synchronized
假设有两个方法同步块,利用同一个对象加锁
static final Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块 A
method2();
}
}
public static void method2() {
synchronized( obj ) {
// 同步块 B
}
}创建锁记录(Lock Record)对象(这个对象是操作系统层面的),每个线程的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的 Mark Word

让锁记录中 Object reference 指向锁对象,并尝试用 cas 替换 Object 的 Mark Word,将 Mark Word 的值存入锁记录
cas:compare and sweep,一种将比较和交换融合为具有原子性的操作
- 独占锁是一种悲观锁,synchronized就是一种独占锁,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。乐观锁用到的机制就是CAS

如果 cas 替换成功(锁对象状态为00),对象头中存储了锁记录地址和状态 00 ,表示由该线程给对象加锁,这时图示如下

如果 cas 失败,有两种情况
- 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程
- 如果是自己执行了 synchronized 锁重入(当前线程再一次给锁对象加锁),那么再添加一条 Lock Record 作为重入的计数

当退出 synchronized 代码块(解锁时)如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重入计数减一

当退出 synchronized 代码块(解锁时)锁记录的值不为 null,这时使用 cas 将 Mark Word 的值恢复给对象头
- 成功,则解锁成功
- 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程
锁膨胀
如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。
static Object obj = new Object();
public static void method1() {
synchronized( obj ) {
// 同步块
}
}当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

这时 Thread-1 加轻量级锁失败,进入锁膨胀流程
- 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址
- 然后自己进入 Monitor 的 EntryList BLOCKED

当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程
自旋优化
重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。
自旋重试成功的情况
| 线程1 (core1 上) | 对象Mark | 线程2(core2 上) |
|---|---|---|
| - | 10(重量锁) | - |
| 访问同步块,获取monitor | 10(重量锁)重量锁指针 | - |
| 成功(加锁) | 10(重量锁)重量锁指针 | - |
| 执行同步块 | 10(重量锁)重量锁指针 | - |
| 执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取monitor |
| 执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
| 执行完毕 | 10(重量锁)重量锁指针 | 自旋重试 |
| 成功(解锁) | 01(无锁) | 自旋重试 |
| - | 10(重量锁)重量锁指针 | 成功(加锁) |
| - | 10(重量锁)重量锁指针 | 执行代码块 |
| - | ... | ... |
自旋重试失败的情况
| 线程1(core1 上) | 对象Mark | 线程2(core2 上) |
|---|---|---|
| - | 10(重量锁) | - |
| 成功(加锁) | 10(重量锁)重量锁指针 | - |
| 执行同步块 | 10(重量锁)重量锁指针 | - |
| 执行同步块 | 10(重量锁)重量锁指针 | - |
| 执行同步块 | 10(重量锁)重量锁指针 | 访问同步块,获取monitor |
| 执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
| 执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
| 执行同步块 | 10(重量锁)重量锁指针 | 自旋重试 |
| 执行同步块 | 10(重量锁)重量锁指针 | 阻塞 |
| - | ... | ... |
自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
Java 7 之后不能控制是否开启自旋功能
原理之偏向锁
原理
轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。
Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现 这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有
例如:
static final Object obj = new Object();
public static void m1() {
synchronized( obj ) {
// 同步块 A
m2();
}
}
public static void m2() {
synchronized( obj ) {
// 同步块 B
m3();
}
}
public static void m3() {
synchronized( obj ) {
// 同步块 C
}
}
偏向状态
引入jdk官方提供的jar包jol
Jol可以查看普通java对象的内部布局工具JOL(JAVA OBJECT LAYOUT),使用此工具可以查看new出来的一个java对象的内部布局,以及一个普通的java对象占用多少字节.
<dependency>
<groupId>org.openjdk.jol</groupId>
<artifactId>jol-core</artifactId>
<version>0.9</version>
</dependency>测试偏向锁延迟特性
代码:
public class TestBiased {
public static void main(String[] args) throws InterruptedException {
System.out.println(ClassLayout.parseInstance(new Dog()).toPrintable());
Thread.sleep(4000);//查看偏向锁延时加载后的情况
System.out.println(ClassLayout.parseInstance(new Dog()).toPrintable());
}
}
class Dog {}结果:

一个对象创建时:
如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的 thread、epoch、age 都为 0
偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加VM参数
- XX:BiasedLockingStartupDelay=0来禁用延迟如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、 age 都为 0,第一次用到 hashcode 时才会赋值
测试加锁后的偏向锁
代码:
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0
public static void main(String[] args) {
Dog d = new Dog();
ClassLayout classLayout = ClassLayout.parseInstance(d);
log.debug("synchronized 前");
System.out.println(classLayout.toPrintable());
synchronized (d) {
log.debug("synchronized 中");
System.out.println(classLayout.toPrintable());
}
log.debug("synchronized 后");
System.out.println(classLayout.toPrintable());
}
}
class Dog {}结果:
11:08:58.117 c.TestBiased [main] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101
11:08:58.121 c.TestBiased [main] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101
11:08:58.121 c.TestBiased [main] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中
测试禁用
代码:在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁
结果:
11:13:10.018 c.TestBiased [main] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
11:13:10.021 c.TestBiased [main] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000
11:13:10.021 c.TestBiased [main] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001默认锁优先级:偏向锁 > 轻量级锁 > 重量级锁
偏向锁的撤销
添加hashcode会出现偏向锁的撤销
正常状态对象一开始是没有 hashCode 的,第一次调用才生成
调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销
轻量级锁会在锁记录中记录 hashCode
重量级锁会在 Monitor 中记录 hashCode 在调用hashCode后使用偏向锁
偏向锁没有位置去存储hashcode,所以偏向锁会被撤销
代码:
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0
public static void main(String[] args) {
Dog d = new Dog();
d.hashcode(); //会禁用该对象的偏向锁
ClassLayout classLayout = ClassLayout.parseInstance(d);
log.debug("synchronized 前");
System.out.println(classLayout.toPrintable());
synchronized (d) {
log.debug("synchronized 中");
System.out.println(classLayout.toPrintable());
}
log.debug("synchronized 后");
System.out.println(classLayout.toPrintable());
}
}
class Dog {}结果:
11:22:10.391 c.TestBiased [main] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001
11:22:10.393 c.TestBiased [main] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000
11:22:10.393 c.TestBiased [main] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001其他线程使用对象会出现偏向锁的撤销
当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
public static void main(String[] args) throws Exception {
Dog d = new Dog();
Thread t1 = new Thread(() -> {
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintable());
}
synchronized (TestBiased.class) {
TestBiased.class.notify();
}
// 如果不用 wait/notify 使用 join 必须打开下面的注释
// 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
/*
try {
System.in.read();
} catch (IOException e) {
e.printStackTrace();
}
*/
}, "t1");
t1.start();
Thread t2 = new Thread(() -> {
synchronized (TestBiased.class) {
try {
TestBiased.class.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug(ClassLayout.parseInstance(d).toPrintable());
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintable());
}
log.debug(ClassLayout.parseInstance(d).toPrintable());
}, "t2");
t2.start();
}
}
class Dog {}注意:这里加notify和wait是为了将两个线程的执行时间错开,防止偏向锁升级为重量级锁
输出:
[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001调用notify和wait时会出现偏向锁的撤销
notify和wait只有重量级锁才有,所以调用notify和wait时会出现偏向锁的撤销
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
public static void main(String[] args) throws InterruptedException {
Dog d = new Dog();
Thread t1 = new Thread(() -> {
log.debug(ClassLayout.parseInstance(d).toPrintable());
synchronized (d) {
log.debug(ClassLayout.parseInstance(d).toPrintable());
try {
d.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
log.debug(ClassLayout.parseInstance(d).toPrintable());
}
}, "t1");
t1.start();
new Thread(() -> {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (d) {
log.debug("notify");
d.notify();
}
}, "t2").start();
}
}
class Dog {}输出:
[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101
[t2] - notify
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010批量重偏向
如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID
当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
public static void main(String[] args) throws InterruptedException {
Vector<Dog> list = new Vector<>();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 30; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
}
synchronized (list) {
list.notify();
}
}, "t1");
t1.start();
Thread t2 = new Thread(() -> {
synchronized (list) {
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
log.debug("===============> ");
for (int i = 0; i < 30; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
}, "t2");
t2.start();
}
}
class Dog {}批量撤销
当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的
public class TestBiased {
private static Logger log = LoggerFactory.getLogger(TestBiased.class);
private static Thread t1, t2, t3;
public static void main(String[] args) throws InterruptedException {
Vector<Dog> list = new Vector<>();
int loopNumber = 39;
t1 = new Thread(() -> {
for (int i = 0; i < loopNumber; i++) {
Dog d = new Dog();
list.add(d);
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable(true));
}
}
LockSupport.unpark(t2);
}, "t1");
t1.start();
t2 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
LockSupport.unpark(t3);
}, "t2");
t2.start();
t3 = new Thread(() -> {
LockSupport.park();
log.debug("===============> ");
for (int i = 0; i < loopNumber; i++) {
Dog d = list.get(i);
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
synchronized (d) {
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintable());
}
}, "t3");
t3.start();
t3.join();
log.debug(ClassLayout.parseInstance(new Dog()).toPrintable());
}
}
class Dog {}参考资料: 偏向锁论文